Author:
Zahra Moquddsa, ,Ashraf Muhammad,Farid Ghulam,Nonlaopon Kamsing, ,
Abstract
<abstract><p>In this article, the bounds of unified integral operators are studied by using a new notion called refined $ (\alpha, h-m)-p $-convex function. The upper and lower bounds in the form of Hadamard inequality are established. From the results of this paper, refinements of well-known inequalities can be obtained by imposing additional conditions.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference22 articles.
1. G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving $m$-convexity and $(s, m)$-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), 107–126.
2. E. Set, B. Celik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6 (2016), 137–149.
3. S. M. Yuan, Z. M. Liu, Some properties of $\alpha$-convex and $\alpha$-quasiconvex functions with respect to $n$-symmetric points, Appl. Math. Comput., 188 (2007), 1142–1150. https://doi.org/10.1016/j.amc.2006.10.060
4. Y. C. Kwun, M. Zahra, G. Farid, S. Zainab, S. M. Kang, On a unified integral operator for $\varphi$-convex functions, Adv. Differ. Equ., 2020 (2020), 297. https://doi.org/10.1186/s13662-020-02761-3
5. J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058