Author:
Taher Hunar Sherzad,Dash Saroj Kumar
Abstract
<abstract><p>Let $ \left\{E_{n}\right\}_{n\geq0} $ and $ \left\{P_{n}\right\}_{n\geq0} $ be sequences of Perrin and Padovan numbers, respectively. We have found all repdigits that can be written as the sum or product of $ E_{n} $ and $ P_{m} $ in the base $ \eta $, where $ 2\leq\eta\leq10 $ and $ m\leq n $. In addition, we have applied the theory of linear forms in logarithms of algebraic numbers and Baker-Davenport reduction method in Diophantine approximation approaches.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. A. C. G. Lomelí, S. H. Hernández, Repdigits as sums of two Padovan numbers, J. Integer Seq., 22 (2019), Article 19.2.3.
2. P. Trojovský, On repdigits as sums of Fibonacci and Tribonacci numbers, Symmetry, 12 (2020), 1774. https://doi.org/10.3390/sym12111774
3. D. Bednařík, E. Trojovská, Repdigits as product of Fibonacci and Tribonacci numbers, Mathematics, 8 (2020), 1720. https://doi.org/10.3390/math8101720
4. F. Erduvan, R. Keskin, Z. Şiar, Repdigits base $b$ as products of two Pell numbers or Pell–Lucas numbers, Bol. Soc. Mat. Mex., 27 (2021), 70. https://doi.org/10.1007/s40590-021-00377-5
5. F. Erduvan, R. Keskin, Z. Şiar, Repdigits base $b$ as products of two Lucas numbers, Quaestiones Mathematicae, 44 (2021), 1283–1293. https://doi.org/10.2989/16073606.2020.1787539