Stability analysis and convergence rate of a two-step predictor-corrector approach for shallow water equations with source terms

Author:

Alqahtani Rubayyi T.1,Ntonga Jean C.2,Ngondiep Eric12

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 90950 Riyadh 11632, Saudi Arabia

2. Hydrological Research Centre, Institute for Geological and Mining Research, 4110 Yaounde-Cameroon

Abstract

<abstract><p>This paper deals with a two-step explicit predictor-corrector approach so-called the two-step MacCormack formulation, for solving the one-dimensional nonlinear shallow water equations with source terms. The proposed two-step numerical scheme uses the fractional steps procedure to treat the friction slope and to upwind the convection term in order to control the numerical oscillations and stability. The developed scheme uses both forward and backward difference formulations in the predictor and corrector steps, respectively. The linear stability of the constructed technique is deeply analyzed using the Von Neumann stability approach whereas the convergence rate of the proposed method is numerically obtained in the $ L^{2} $-norm. A wide set of numerical examples confirm the theoretical results.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference46 articles.

1. D. D. Franz, C. S. Melching, Full equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures, Michigan: U.S. Department of the Interior, U.S. Geological Survey, 1997.

2. D. R. Basco, Computation of rapidly varied unsteady free surface flow, Michigan: U.S. Department of the Interior, U.S. Geological Survey, 1987.

3. P. Brufau, J. Burguete, P. García-Navarro, J. Murillo, The shallow water equations: An example of hyperbolic system, Monografías de la Real Academia de Ciencias de Zaragoza, 31 (2008), 89–119.

4. G. Cannata, L. Lasaponara, F. Gallerano, Nonlinear shallow water equations numerical integration on curvilinear boundary-conforning grids, WSEAS Trans. Fluids Mech., 10 (2015), 13–25.

5. G. Li, V. Caleffi, J. Gao, High-order well-balanced central WENO scheme for pre-balanced shallow water equations, Comput. Fluids, 99 (2014), 182–189. https://doi.org/10.1016/j.compfluid.2014.04.022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3