Reflexive edge strength of convex polytopes and corona product of cycle with path
-
Published:2022
Issue:7
Volume:7
Page:11784-11800
-
ISSN:2473-6988
-
Container-title:AIMS Mathematics
-
language:
-
Short-container-title:MATH
Author:
Yoong Kooi-Kuan1, Hasni Roslan1, Lau Gee-Choon2, Asim Muhammad Ahsan3, Ahmad Ali3
Affiliation:
1. Special Interest Group on Modelling and Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia 2. Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), Johor, Malaysia 3. College of Computer Sciences and Information Technology, Jazan University, Jazan, Saudi Arabia
Abstract
<abstract><p>For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an <italic>edge irregular reflexive $ k $-labeling</italic> of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a <italic>reflexive edge strength</italic> of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Mathematics
Reference24 articles.
1. G. Chartrand, P. Zhang, A first course in graph theory, Mineola, New York: Dover Publication, Inc., 2013. 2. G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210. https://doi.org/10.2307/3146243 3. D. Tanna, Graph labeling techniques, Doctoral dissertation, University of Newcastle, Newcastle, Australia, 2017. 4. M. Bača, S. Jendrol', M. Miller, J. Ryan, On irregular total labelings, Discrete Math., 307 (2007), 1378–1388. https://doi.org/10.1016/j.disc.2005.11.075 5. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|