Enhancing cybersecurity in cloud-assisted Internet of Things environments: A unified approach using evolutionary algorithms and ensemble learning

Author:

Aljebreen Mohammed1,Mengash Hanan Abdullah2,Mahmood Khalid3,Alhashmi Asma A.4,Salama Ahmed S.5

Affiliation:

1. Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

2. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. Department of Information Systems, College of Science & Art at Mahayil, King Khalid University, Saudi Arabia

4. Department of Computer Science at College of Science, Northern Border University, Arar, Saudi Arabia

5. Department of Electrical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11845, Egypt

Abstract

<abstract> <p>Internet of Things (IoT) security is an umbrella term for the strategies and tools that protect devices connected to the cloud, and the network they use to connect. The IoT connects different objects and devices through the internet to communicate with similarly connected machines or devices. An IoT botnet is a network of infected or cooperated IoT devices that can be remotely organized by cyber attackers for malicious purposes such as spreading malware, stealing data, distributed denial of service (DDoS) attacks, and engaging in other types of cybercrimes. The compromised devices can be included in any device connected to the internet and communicate data with, e.g., cameras, smart home appliances, routers, etc. Millions of devices can include an IoT botnet, making it an attractive tool for cyber attackers to launch attacks. Lately, cyberattack detection using deep learning (DL) includes training neural networks on different datasets to automatically detect patterns indicative of cyber threats, which provides an adaptive and proactive approach to cybersecurity. This study presents an evolutionary algorithm with an ensemble DL-based botnet detection and classification (EAEDL-BDC) approach. The goal of the study is to enhance cybersecurity in the cloud-assisted IoT environment via a botnet detection process. In the EAEDL-BDC technique, the primary stage of data normalization using Z-score normalization is performed. For the feature selection process, the EAEDL-BDC technique uses a binary pendulum search algorithm (BPSA). Moreover, a weighted average ensemble of three models, such as the modified Elman recurrent neural network (MERNN), gated recurrent unit (GRU), and long short-term memory (LSTM), are used. Additionally, the hyperparameter choice of the DL approaches occurs utilizing the reptile search algorithm (RSA). The experimental outcome of the EAEDL-BDC approach can be examined on the N-BaIoT database. The extensive comparison study implied that the EAEDL-BDC technique reaches a superior accuracy value of 99.53% compared to other approaches concerning distinct evaluation metrics.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3