The orthogonal polynomials method using Gegenbauer polynomials to solve mixed integral equations with a Carleman kernel

Author:

Alalyani Ahmad1,Abdou M. A.2,Basseem M.3

Affiliation:

1. Department of Mathematics, Faculty of Science, Al-Baha University, Al-Baha 65526, Saudi Arabia

2. Department of Mathematics, Faculty of Education, Alexandria University, Egypt

3. Department of Mathematics, Faculty of Engineering, Sinai University, Egypt

Abstract

<abstract> <p>The orthogonal polynomials approach with Gegenbauer polynomials is an effective tool for analyzing mixed integral equations (MIEs) due to their orthogonality qualities. This article reviewed recent breakthroughs in the use of Gegenbauer polynomials to solve mixed integral problems. Previous authors studied the problem with a continuous kernel that combined both Volterra (V) and Fredholm (F) components; however, in this paper, we focused on a singular Carleman kernel. The kernel of FI was measured with respect to position in the space <inline-formula><tex-math id="M1">\begin{document}$ {L}_{2}[-\mathrm{1, 1}], $\end{document}</tex-math></inline-formula> while the kernel of Ⅵ was considered as a function of time in the space <inline-formula><tex-math id="M2">\begin{document}$ C[0, T], T &lt; 1 $\end{document}</tex-math></inline-formula>. The existence of a unique solution was discussed in <inline-formula><tex-math id="M3">\begin{document}$ {L}_{2}\left[-\mathrm{1, 1}\right]\times C\left[0, T\right] $\end{document}</tex-math></inline-formula> space. The solution and its error stability were both investigated and commented on. Finally, numerical examples were reviewed, and their estimated errors were assessed using Maple (2022) software.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference18 articles.

1. G. Y. Popov, Contact problems for a linearly deformable base, Kiev-Odessa, 1982.

2. V. M. Aleksandrovsk, E. V. Kovalenko, Problems in mechanics media with mixed boundary conditions, Moscow: Nauk, 1986.

3. S. M. Mkhitaryan, M. A. Abdou, On various method for the solution of the Carleman integral equation, Dakl. Acad. Nauk. Arm. SSR, 89 (1990), 125–129.

4. N. K. Artinian, Plane contact problem of the theory of creef, J. Appl. Math. Mech., 23 (1959), 901–923.

5. A. Alalyani, M. A. Abdou, M. Basseem, On a solution of a third kind mixed integro-differential equation with singular kernel using orthogonal polynomial method, J. Appl. Math., 2023 (2023), 5163398. https://doi.org/10.1155/2023/5163398

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3