A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators

Author:

Zayed Mohra1,Wani Shahid Ahmad2,Oros Georgia Irina3,Ramŕez William45

Affiliation:

1. Mathematics Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia

2. Symbiosis Institute of Technology, Symbiosis International (Deemed) University (SIU), Pune, Maharashtra, India

3. Department of Mathematics and Computer Science, Faculty of Informatics and Sciences, University of Oradea, Oradea 410087, Romania

4. Section of Mathematics International Telematic University Uninettuno, Rome 00186, Italy

5. Department of Natural and Exact Sciences, Universidad de la Costa, Barranquilla 080002, Colombia

Abstract

<abstract><p>Originally developed within the realm of mathematical physics, integral transformations have transcended their origins and now find wide application across various mathematical domains. Among these applications, the construction and analysis of special polynomials benefit significantly from the elucidation of generating expressions, operational principles, and other distinctive properties. This study delves into a pioneering exploration of an extended lineage of Frobenius-Euler polynomials belonging to the Hermite-Apostol type, incorporating multivariable variables through fractional operators. Motivated by the exigencies of contemporary engineering challenges, the research endeavors to uncover the operational rules and establishing connections inherent within these extended polynomials. In doing so, it seeks to chart a course towards harnessing these mathematical constructs within diverse engineering contexts, where their unique attributes hold the potential for yielding profound insights. The study deduces operational rules for this generalized family, facilitating the establishment of generating connections and the identification of recurrence relations. Furthermore, it showcases compelling applications, demonstrating how these derived polynomials may offer meaningful solutions within specific engineering scenarios.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference30 articles.

1. G. Dattotli, S. Lorenzutta, C. Cesarano, Bernstein polynomials and operational methods, J. Comput. Anal. Appl., 8 (2006), 369–377.

2. G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, In: D. Cocolicchio, G. Dattoli, H. M. Srivastava, Advanced special functions and applications, Melfi, May 9–12, 1999, Rome: Aracne Editrice, 2000,147–164.

3. T. Nahid, J. Choi, Certain hybrid matrix polynomials related to the Laguerre-Sheffer family, Fractal Fract., 6 (2022), 211. https://doi.org/10.3390/fractalfract6040211

4. S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 840. https://doi.org/10.3390/sym15040840

5. R. Alyusof, S. A. Wani, Certain properties and applications of $\Delta_h$ hybrid special polynomials associated with Appell sequences, Fractal Fract., 7 (2023), 233. https://doi.org/10.3390/fractalfract7030233

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3