The "never-proved" triangle inequality: A GeoGebra & CAS approach

Author:

Kovács Zoltán1,Recio Tomás2,Ueno Carlos3,Vajda Róbert45

Affiliation:

1. The Private University College of Education of the Diocese of Linz, Salesianumweg 3, 4020 Linz

2. Department of Industrial Engineering, Higher Polytechnical School, University Antonio de Nebrija, C. Santa Cruz de Marcenado 27, Madrid 28015, Spain

3. CEAD Prof. Félix Pérez Parrilla, C. Doctor García Castrillo, 22, Las Palmas de Gran Canaria, 35005, Spain

4. School of Education, Johannes Kepler University, Linz 4040, Austria

5. Bolyai Institute, University of Szeged, Szeged 6723, Hungary

Abstract

<abstract><p>We use a quite simple, yet challenging, elementary geometry statement, the so-called "never proved" (by a mathematician) theorem, introduced by Prof. Jiawei Hong in his communication to the IEEE 1986 Symposium on Foundations of Computer Science, to exemplify and analyze the current situation of achievements, ongoing improvements and limitations of GeoGebra's automated reasoning tools, as well as other computer algebra systems, in dealing with geometric inequalities. We present a large collection of facts describing the curious (and confusing) history behind the statement and its connection to automated deduction. An easy proof of the "never proved" theorem, relying on some previous (but not trivial) human work is included. Moreover, as part of our strategy to address this challenging result with automated tools, we formulate a large list of variants of the "never proved" statement (generalizations, special cases, etc.). Addressing such variants with GeoGebra Discovery, ${\texttt{Maple}}$, ${\texttt{REDUCE/Redlog}}$ or ${\texttt{Mathematica}}$ leads us to introduce and reflect on some new approaches (e.g., partial elimination of quantifiers, consideration of symmetries, relevance of discovery vs. proving, etc.) that could be relevant to consider for future improvements of automated reasoning in geometry algorithms. As a byproduct, we obtain an original result (to our knowledge) concerning the family of triangles inscribable in a given triangle.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference49 articles.

1. C. Abar, Z. Kovács, T. Recio, R. Vajda, Connecting Mathematica and GeoGebra to explore inequalities on planar geometric constructions, Brazilian Wolfram Technology Conference, Sa o Paulo, November, 2019. https://www.researchgate.net/profile/Zoltan_Kovacs13/publication/337499405_Abar-Kovacs-Recio-Vajdanb/data/5ddc5439299bf10c5a33438a/Abar-Kovacs-Recio-Vajda.nb

2. P. Boutry, G. Braun, J. Narboux, Formalization of the arithmetization of Euclidean plane geometry and applications, J. Symb. Comput., 90 (2019), 149–168. https://doi.org/10.1016/j.jsc.2018.04.007

3. F. Botana, M. Hohenwarter, P. Janičić, Z. Kovács, I. Petrović, T. Recio, et al., Automated Theorem Proving in GeoGebra: Current Achievements, J. Autom. Reasoning, 55 (2015), 39–59. https://doi.org/10.1007/s10817-015-9326-4

4. B. Bollobás, An extremal problem for polygons inscribed in a convex curve, Can. J. Math., 19 (1967), 523–528. https://doi.org/10.4153/CJM-1967-045-5

5. O. Bottema, R. Žž. Djordjevič, R. R. Janič, D. S. Mitrinovič, P. M. Vasic, Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, 1969.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3