Affiliation:
1. School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
2. College of Science, Shanghai University, Shanghai 200444, China
Abstract
<abstract><p>This paper serves to identify some new characterizations and representations of the Minkowski inverse in Minkowski space. First of all, a few representations of $ \{1, 3^{\mathfrak{m}}\} $-, $ \{1, 2, 3^{\mathfrak{m}}\} $-, $ \{1, 4^{\mathfrak{m}}\} $- and $ \{1, 2, 4^{\mathfrak{m}}\} $-inverses are given in order to represent the Minkowski inverse. Second, some famous characterizations of the Moore-Penrose inverse are extended to that of the Minkowski inverse. Third, using the Hartwig-Spindelböck decomposition, we present a representation of the Minkowski inverse. And, based on this result, an interesting characterization of the Minkowski inverse is showed by a rank equation. Finally, we obtain several new representations of the Minkowski inverse in a more general form, by which the Minkowski inverse of a class of block matrices is given.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference45 articles.
1. M. Renardy, Singular value decomposition in Minkowski space, Linear Algebra Appl., 236 (1996), 53–58. http://dx.doi.org/10.1016/0024-3795(94)00124-3
2. A. R. Meenakshi, Generalized inverses of matrices in Minkowski space, Proc. Nat. Semin. Algebra Appl., 57 (2000), 1–14.
3. H. Zekraoui, Z. Al-Zhour, C. Özel, Some new algebraic and topological properties of the Minkowski inverse in the Minkowski space, Sci. World J., 2013 (2013), 765732. http://dx.doi.org/10.1155/2013/765732
4. A. R. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malays. Math. Sci. Soc., 23 (2000), 45–52.
5. K. Bharathi, Product of k-EP block matrices in Minkowski space, Intern. J. Fuzzy Math. Arch., 5 (2014), 29–38.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献