Spatiotemporal dynamics of a diffusive predator-prey system incorporating social behavior

Author:

Souna Fethi1,Djilali Salih23,Alyobi Sultan4,Zeb Anwar5,Gul Nadia6,Alsaeed Suliman78,Nisar Kottakkaran Sooppy89

Affiliation:

1. Laboratory of biomathematics, Department of Mathematics, Djillali Liabés University, BP. 89 Sidi Bel Abbes, 22000, Algeria

2. Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Université de Tlemcen, Tlemcen, Algeria

3. Faculty of Exact and Computer Sciences, Mathematics Department, Hassiba Benbouali university, Chlef, Algeria

4. King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia

5. Department of Mathematics, COMSATS University Islamabad, Abbottabad, 22060, Pakistan

6. Department of Mathematics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan

7. Applied Sciences Collage, Department of Mathematical Sciences, Umm Al-Qura Univer-sity P.O. Box 715, 21955 Makkah, Saudi Arabia

8. Mathematics Department, College of Sciences and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia

9. School of Technology, Woxsen University- Hyderabad-502345, Telangana State, India

Abstract

<abstract><p>This research concerned with a new formulation of a spatial predator-prey model with Leslie-Gower and Holling type II schemes in the presence of prey social behavior. The aim interest here is to distinguish the influence of Leslie-Gower term on the spatiotemporal behavior of the model. Interesting results are obtained as Hopf bifurcation, Turing bifurcation and Turing-Hopf bifurcation. A rigorous mathematical analysis shows that the presence of Leslie-Gower can induce Turing pattern, which shows that this kind of interaction is very important in modeling different natural phenomena. The direction of Turing-Hopf bifurcation is studied with the help of the normal form. The obtained results are tested numerically.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3