Generalized common best proximity point results in fuzzy multiplicative metric spaces

Author:

Ishtiaq Umar1,Jahangeer Fahad2,Kattan Doha A.3,De la Sen Manuel4

Affiliation:

1. Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan

2. Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan

3. Department of Mathematics, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia

4. Department of Electricity and Electronics, Institute of Research and Development of Processes, University of the Basque Country, Campus of Leioa, Leioa, Bizkaia, Spain

Abstract

<abstract><p>In this manuscript, we prove the existence and uniqueness of a common best proximity point for a pair of non-self mappings satisfying the iterative mappings in a complete fuzzy multiplicative metric space. We consider the pair of non-self mappings $ X:\mathcal{P}\rightarrow \mathcal{G} $ and $ Z:\mathcal{P }\rightarrow \mathcal{G} $ and the mappings do not necessarily have a common fixed-point. In a complete fuzzy multiplicative metric space, if $ \mathcal{\varphi } $ satisfy the condition $ \mathcal{\varphi } \left(b, Zb, \varsigma \right) = \mathcal{\varphi }\left(\mathcal{P}, \mathcal{ G}, \varsigma \right) = \mathcal{\varphi }\left(b, Xb, \varsigma \right) $, then $ b $ is a common best proximity point. Further, we obtain the common best proximity point for the real valued functions $ \mathcal{L}, \mathcal{M}:(0, 1]\rightarrow \mathbb{R} $ by using a generalized fuzzy multiplicative metric space in the setting of $ (\mathcal{L}, \mathcal{M}) $-iterative mappings. Furthermore, we utilize fuzzy multiplicative versions of the $ (\mathcal{L}, \mathcal{M}) $-proximal contraction, $ (\mathcal{L}, \mathcal{M}) $-interpolative Reich-Rus-Ciric type proximal contractions, $ (\mathcal{L}, \mathcal{M}) $-Kannan type proximal contraction and $ (\mathcal{L}, \mathcal{M}) $-interpolative Hardy-Rogers type proximal contraction to examine the common best proximity points in fuzzy multiplicative metric space. Moreover, we provide differential non-trivial examples to support our results.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3