Affiliation:
1. Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
2. Department of Mathematics, Deanship of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
Abstract
<abstract>
<p>The notion of the bipolar complex fuzzy set (BCFS) is a fundamental notion to be considered for tackling tricky and intricate information. Here, in this study, we want to expand the notion of BCFS by giving a general algebraic structure for tackling bipolar complex fuzzy (BCF) data by fusing the conception of BCFS and semigroup. Firstly, we investigate the bipolar complex fuzzy (BCF) sub-semigroups, BCF left ideal (BCFLI), BCF right ideal (BCFRI), BCF two-sided ideal (BCFTSI) over semigroups. We also introduce bipolar complex characteristic function, positive $ \left(\omega , \eta \right) $-cut, negative $ \left(\varrho , \sigma \right) $-cut, positive and $ \left(\left(\omega , \eta \right), \left(\varrho , \sigma \right)\right) $-cut. Further, we study the algebraic structure of semigroups by employing the most significant concept of BCF set theory. Also, we investigate numerous classes of semigroups such as right regular, left regular, intra-regular, and semi-simple, by the features of the bipolar complex fuzzy ideals. After that, these classes are interpreted concerning BCF left ideals, BCF right ideals, and BCF two-sided ideals. Thus, in this analysis, we portray that for a semigroup $ Ş $ and for each BCFLI $ {М}_{1} = \left({\mathrm{\lambda }}_{P-{М}_{1}}, {\mathrm{\lambda }}_{N-{М}_{1}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{1}}+\iota {\mathrm{\lambda }}_{IP-{М}_{1}}, {\mathrm{\lambda }}_{RN-{М}_{1}}+\iota {\mathrm{\lambda }}_{IN-{М}_{1}}\right) $ and BCFRI $ {М}_{2} = \left({\mathrm{\lambda }}_{P-{М}_{2}}, {\mathrm{\lambda }}_{N-{М}_{2}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{2}}+\iota {\mathrm{\lambda }}_{IP-{М}_{2}}, {\mathrm{\lambda }}_{RN-{М}_{2}}+\iota {\mathrm{\lambda }}_{IN-{М}_{2}}\right) $ over $ Ş $, $ {М}_{1}\cap {М}_{2} = {М}_{1}⊚{М}_{2} $ if and only if $ Ş $ is a regular semigroup. At last, we introduce regular, intra-regular semigroups and show that $ {М}_{1}\cap {М}_{2}\preccurlyeq {М}_{1}⊚{М}_{2} $ for each BCFLI $ {М}_{1} = \left({\mathrm{\lambda }}_{P-{М}_{1}}, {\mathrm{\lambda }}_{N-{М}_{1}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{1}}+\iota {\mathrm{\lambda }}_{IP-{М}_{1}}, {\mathrm{\lambda }}_{RN-{М}_{1}}+\iota {\mathrm{\lambda }}_{IN-{М}_{1}}\right) $ and for each BCFRI $ {М}_{2} = \left({\mathrm{\lambda }}_{P-{М}_{2}}, {\mathrm{\lambda }}_{N-{М}_{2}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{2}}+\iota {\mathrm{\lambda }}_{IP-{М}_{2}}, {\mathrm{\lambda }}_{RN-{М}_{2}}+\iota {\mathrm{\lambda }}_{IN-{М}_{2}}\right) $ over $ Ş $ if and only if a semigroup $ Ş $ is regular and intra-regular.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference49 articles.
1. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
2. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5
3. N. Kuroki, Fuzzy bi-ideal in semigroups, Comm. Math. Univ. Sancti Pauli, 27 (1979), 17–21.
4. N. Kuroki, Fuzzy bi-ideals in semigroups, Rikkyo Daigaku sugaku zasshi, 28 (1980), 17–21.
5. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Set. Syst., 5 (1981), 203–215. https://doi.org/10.1016/0165-0114(81)90018-X
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献