The exponential non-uniform bound on the half-normal approximation for the number of returns to the origin

Author:

Siripraparat Tatpon1,Jongpreechaharn Suporn2

Affiliation:

1. Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Pracharat 1 Road, Bangkok 10800, Thailand

2. Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand

Abstract

This research explored the number of returns to the origin within the framework of a symmetric simple random walk. Our primary objective was to approximate the distribution of return events to the origin by utilizing the half-normal distribution, which is chosen for its appropriateness as a limit distribution for nonnegative values. Employing the Stein's method in conjunction with concentration inequalities, we derived an exponential non-uniform bound for the approximation error. This bound signifies a significant advancement in contrast to existing bounds, encompassing both the uniform bounds proposed by Döbler <sup>[<span class="xref"><a href="#b1" ref-type="bibr">1</a></span>]</sup> and polynomial non-uniform bounds presented by Sama-ae, Chaidee, and Neammanee <sup>[<span class="xref"><a href="#b2" ref-type="bibr">2</a></span>]</sup>, and Siripraparat and Neammanee <sup>[<span class="xref"><a href="#b3" ref-type="bibr">3</a></span>]</sup>.

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference19 articles.

1. C. Döbler, Stein's method for the half-normal distribution with applications to limit theorems related to simple random walk, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 171–191.

2. A. Sama-ae, N. Chaidee, K. Neammanee, Half-normal approximation for statistics of symmetric simple random walk, Commun. Stat.-Theor. M., 47 (2018), 779–792. https://doi.org/10.1080/03610926.2016.1139129

3. T. Siripraparat, K. Neammanee, A non uniform bound for half-normal approximation of the number of returns to the origin of symmetric simple random walk, Commun. Stat.-Theor. M., 47 (2018), 42–54. https://doi.org/10.1080/03610926.2017.1300286

4. W. Feller, An introduction to probability theory and its applications, 3 Eds., New York: Wiley, 1968.

5. C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, In: Proceeding of the sixth Berkeley symposium on mathematical statistics and probability, Berkeley: University of California Press, 1972,583–602.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3