Abstract
<p>We have developed new methods for constructing exponential Riesz bases by combining existing ones. These methods involve taking unions of frequency sets and domains respectively, offering easier construction compared to known techniques. Along with examples illustrating our methods, we also provide several examples that highlight the intricate nature of exponential Riesz bases.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. M. Bownik, P. Casazza, A. W. Marcus, D. Speegle, Improved bounds in Weaver and Feichtinger conjectures, J. Reine Angew. Math., 749 (2019), 267–293. https://doi.org/10.1515/crelle-2016-0032
2. C. Cabrelli, D. Carbajal, Riesz bases of exponentials on unbounded multi-tiles, Proc. Amer. Math. Soc., 146 (2018), 1991–2004. https://doi.org/10.1090/proc/13980
3. A. Caragea, D. G. Lee, A note on exponential Riesz bases, Sampl. Theory Signal Process. Data Anal., 20 (2022), 13. https://doi.org/10.1007/s43670-022-00031-9
4. O. Christensen, An Introduction to Frames and Riesz Bases, 2 Eds., Boston: Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-25613-9
5. L. De Carli, Concerning exponential bases on multi-rectangles of $ \mathbb R^d$, In: Topics in Classical and Modern Analysi, Applied and Numerical Harmonic Analysis, Boston: Birkhäuser, 2019, 65–85. https://doi.org/10.1007/978-3-030-12277-5
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献