Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method

Author:

Ahsan Sumbal1,Nawaz Rashid1,Akbar Muhammad1,Abdullah Saleem1,Nisar Kottakkaran Sooppy2,Vijayakumar Velusamy3

Affiliation:

1. Department of Mathematics, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan

2. Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser, 11991, Prince Sattam bin Abdulaziz University, Saudi Arabia

3. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore -632 014, Vellore, Tamilnadu, India

Abstract

<abstract> <p>In this paper, an efficient technique called Optimal Homotopy Asymptotic Method has been extended for the first time to the solution of the system of fuzzy integro-differential equations of fractional order. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The fuzzy fractional derivatives are defined in Caputo sense. It is followed by suggesting a new result from Optimal Homotopy Asymptotic Method for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of system of fuzzy integro-differential equations of fractional order and finally, we demonstrate a numerical example. The validity and efficiency of the proposed technique are demonstrated via these numerical examples which depend upon the parametric form of the fuzzy number. The optimum values of convergence control parameters are calculated using the well-known method of least squares, obtained results are compared with fractional residual power series method. It is observed from the results that the suggested method is accurate, straightforward and convenient for solving system of fuzzy Volterra integrodifferential equations of fractional order.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3