Stochastic analysis of survival and sensitivity in a competition model influenced by toxins under a fluctuating environment

Author:

Ma Yuanlin1,Yu Xingwang2

Affiliation:

1. School of Economics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

2. School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

Abstract

<abstract><p>This paper proposed a stochastic toxin-dependent competition model to investigate the impact of environmental noise on species interaction dynamics. First, a survival analysis was conducted to establish the sufficient conditions for population extinction and persistence. Second, we proved the existence of a unique ergodic stationary distribution. Finally, the spatial arrangement of random states near the deterministic attractor was investigated using the stochastic sensitivity functions technique. This analytical approach facilitates constructing confidence ellipses and estimating critical noise intensity corresponding to the onset of transition. Both theoretical and numerical findings demonstrated that significant levels of noise experienced by one species lead to its extinction while promoting persistence in its competitor; conversely, negligible levels of noise did not alter the original competition outcomes in the deterministic model. However, when both species encounter moderate levels of noise, various modifications can occur in competition outcomes. These findings have significant implications for preserving ecosystem diversity.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3