Author:
Xie Huantian, ,Kuang Nenghui,
Abstract
<abstract><p>We consider the nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind defined by $ dX_t = \theta X_tdt+dY_t^{(1)}, t\geq 0, X_0 = 0 $ with an unknown parameter $ \theta > 0, $ where $ dY_t^{(1)} = e^{-t}dG_{a_{t}} $ and $ \{G_t, t\geq 0\} $ is a mean zero Gaussian process with the self-similar index $ \gamma\in (\frac{1}{2}, 1) $ and $ a_t = \gamma e^{\frac{t}{\gamma}} $. Based on the discrete observations $ \{X_{t_i}:t_i = i\Delta_n, i = 0, 1, \cdots, n\} $, two least squares type estimators $ \hat{\theta}_n $ and $ \tilde{\theta}_n $ of $ \theta $ are constructed and proved to be strongly consistent and rate consistent. We apply our results to the cases such as fractional Brownian motion, sub-fractional Brownian motion, bifractional Brownian motion and sub-bifractional Brownian motion. Moreover, the numerical simulations confirm the theoretical results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献