Abstract
<abstract><p>In this paper we are concerned with the Lane-Emden-Fowler equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{\begin{array}{rll}-\Delta u & = u^{\frac{n+2}{n-2}- \varepsilon}& {\rm{in}}\; \Omega, \\ u&>0& {\rm{in}}\; \Omega, \\ u& = 0& {\rm{on}}\; \partial \Omega, \end{array} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ \Omega \subset \mathbb{R}^n $ ($ n \geq 3 $) is a nonconvex polygonal domain and $ \varepsilon > 0 $. We study the asymptotic behavior of minimal energy solutions as $ \varepsilon > 0 $ goes to zero. A main part is to show that the solution is uniformly bounded near the boundary with respect to $ \varepsilon > 0 $. The moving plane method is difficult to apply for the nonconvex polygonal domain. To get around this difficulty, we derive a contradiction after assuming that the solution blows up near the boundary by using the Pohozaev identity and the Green's function.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159–174. https://doi.org/10.1016/S0294-1449(16)30270-0
2. O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1–52. https://doi.org/10.1016/0022-1236(90)90002-3
3. F. V. Atkinson, L. A. Peletier, Elliptic equations with nearly critical growth, J. Differ. Equ., 70 (1987), 349–365. https://doi.org/10.1016/0022-0396(87)90156-2
4. H. Brezis, L. A. Peletier, Asymptotics for elliptic equations involving critical growth, In: Partial differential equations and the calculus of variations, Boston: Birkhäuser Boston, 1989. https://doi.org/10.1007/978-1-4615-9828-2_7
5. B. Aharrouch, A. Aberqi, J. Bennouna, Existence and regularity of solutions to unilateral nonlinear elliptic equation in Marcinkiewicz space with variable exponent, Filomat, 37 (2023), 5785–5797. https://doi.org/10.2298/FIL2317785A