Abstract
<abstract><p>The main aim of this study is to characterize affine weak $ k $-algebra $ H $ whose affine $ k $-variety $ S = M_{k}(H, k) $ admits a regular monoid structure. As preparation, we determine some results of weak Hopf algebras morphisms, and prove that the anti-function from the category $ \mathcal{C} $ of weak Hopf algebras whose weak antipodes are anti-algebra morphisms is adjoint. Then, we prove the main result of this study: the anti-equivalence between the category of affine algebraic $ k $-regular monoids and the category of finitely generated commutative reduced weak $ k $-Hopf algebras.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. E. Abe, Hopf algebras, Cambridge University Press, 1980.
2. A. Borel, Linear algebraic groups, Benjamin, N.Y, 1969.
3. W. E. Clark, Affine semigroups over an arbitrary field, Proc. Glasgow Math. Assoc., 7 (1965), 80–92. doi: 10.1017/S2040618500035231.
4. P. Deligne, J. S. Milne, Tannakian categories, Lecture Notes in Mathematics, Berlin, Heidelberg: Springer, 900 (1982), 101–228. doi: 10.1007/978-3-540-38955-2_4.
5. H. Hopf, Über die topologie der gruppen-mannigfaltigkeiten und ihrer verallgemeinerungen, Ann. Math., 42 (1941), 22–52. doi: 10.1007/978-3-662-25046-4_9.