Applicability domains of neural networks for toxicity prediction

Author:

Pérez-Santín Efrén1,de-la-Fuente-Valentín Luis1,García Mariano González1,Bravo Kharla Andreina Segovia1,Hernández Fernando Carlos López2,Sánchez José Ignacio López1

Affiliation:

1. Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja (UNIR), Av. de la Paz 137, Logroño, La Rioja 26004, Spain

2. Applied Mathematics Department, Faculty of Mathematics, Universidad Complutense de Madrid

Abstract

<abstract> <p>In this paper, the term "applicability domain" refers to the range of chemical compounds for which the statistical quantitative structure-activity relationship (QSAR) model can accurately predict their toxicity. This is a crucial concept in the development and practical use of these models. First, a multidisciplinary review is provided regarding the theory and practice of applicability domains in the context of toxicity problems using the classical QSAR model. Then, the advantages and improved performance of neural networks (NNs), which are the most promising machine learning algorithms, are reviewed. Within the domain of medicinal chemistry, nine different methods using NNs for toxicity prediction were compared utilizing 29 alternative artificial intelligence (AI) techniques. Similarly, seven NN-based toxicity prediction methodologies were compared to six other AI techniques within the realm of food safety, 11 NN-based methodologies were compared to 16 different AI approaches in the environmental sciences category and four specific NN-based toxicity prediction methodologies were compared to nine alternative AI techniques in the field of industrial hygiene. Within the reviewed approaches, given known toxic compound descriptors and behaviors, we observed a difficulty in being able to extrapolate and predict the effects with untested chemical compounds. Different methods can be used for unsupervised clustering, such as distance-based approaches and consensus-based decision methods. Additionally, the importance of model validation has been highlighted within a regulatory context according to the Organization for Economic Co-operation and Development (OECD) principles, to predict the toxicity of potential new drugs in medicinal chemistry, to determine the limits of detection for harmful substances in food to predict the toxicity limits of chemicals in the environment, and to predict the exposure limits to harmful substances in the workplace. Despite its importance, a thorough application of toxicity models is still restricted in the field of medicinal chemistry and is virtually overlooked in other scientific domains. Consequently, only a small proportion of the toxicity studies conducted in medicinal chemistry consider the applicability domain in their mathematical models, thereby limiting their predictive power to untested drugs. Conversely, the applicability of these models is crucial; however, this has not been sufficiently assessed in toxicity prediction or in other related areas such as food science, environmental science, and industrial hygiene. Thus, this review sheds light on the prevalent use of Neural Networks in toxicity prediction, thereby serving as a valuable resource for researchers and practitioners across these multifaceted domains that could be extended to other fields in future research.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pesticides: An alarming detrimental to health and environment;Science of The Total Environment;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3