Abstract
<abstract>
<p>Let $ G $ be a finite group. The intersection graph of subgroups of $ G $ is a graph whose vertices are all non-trivial subgroups of $ G $ and in which two distinct vertices $ H $ and $ K $ are adjacent if and only if $ H\cap K\neq 1 $. In this paper, we classify all finite abelian groups whose thickness and outerthickness of subgroup intersection graphs are 1 and 2, respectively. We also investigate the thickness and outerthickness of subgroup intersection graphs for some finite non-abelian groups.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference33 articles.
1. D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
2. G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi, On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin., 24 (2017), 1-22.
3. V. B. Alekseev, V. S. Gončakov, The thickness of an arbitrary complete graph, (Russian) Mat. Sb. (N.S.), 101(143) (1976), 212-230.
4. A. Aggarwal, M. Klawe, P. Shor, Multilayer grid embeddings for VLSI, Algorithmica, 6 (1991), 129-151.
5. D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献