MOJMA: A novel multi-objective optimization algorithm based Java Macaque Behavior Model

Author:

Karunanidy Dinesh1,Ramalingam Rajakumar2,Basheer Shakila3,Mahadevan Nandhini4,Rashid Mamoon5

Affiliation:

1. Department of Computer Science & Technology, Madanapalle Institute of Technology & Science, Madanapalle 517325, India

2. Centre for Automation, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, TamilNadu, India

3. Department of Information Systems, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia

4. Department of Computer Science and Engineering (Data Science), Madanapalle Institute of Technology & Science, Madanapalle 517325, India

5. Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University, Pune, 411048, India

Abstract

<abstract> <p>We introduce the Multi-objective Java Macaque Algorithm for tackling complex multi-objective optimization (MOP) problems. Inspired by the natural behavior of Java Macaque monkeys, the algorithm employs a unique selection strategy based on social hierarchy, with multiple search agents organized into multi-group populations. It includes male replacement strategies and a learning process to balance intensification and diversification. Multiple decision-making parameters manage trade-offs between potential solutions. Experimental results on real-time MOP problems, including discrete and continuous optimization, demonstrate the algorithm's effectiveness with a 0.9% convergence rate, outperforming the MEDA/D algorithm's 0.98%. This novel approach shows promise for addressing MOP complexities in practical applications.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference50 articles.

1. X. Yang, Nature-inspired metaheuristic algorithms, Luniver Press, second edition. 2010.

2. D. Kumar, S. Kumar, R. Bansal, P. Singla, A survey to nature inspired soft computing, Int. J. Inf. Syst. Model., 8 (2017), 112–133. https://doi.org/10.4018/IJISMD.2017040107

3. A. Sharma, A. Sharma, B. K. Panigrahi, D. Kiran, R. Kumar, Ageist spider monkey optimization algorithm, Swarm Evol. Comput., 28 (2016), 58–77. https://doi.org/10.1016/j.swevo.2016.01.002.

4. J. C. Bansal, H. Sharma, S. S. Jadon, M. Clerc, Spider monkey optimization algorithm for numerical optimization, Memetic Comput., 6 (2014): 31–47. https://doi.org/10.1007/s12293-013-0128-0.

5. H. Sharma, G. Hazrati, J. C. Bansal, Spider monkey optimization algorithm, Evol. Swarm Intell. Algorithms, (2019), 43–59.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3