Affiliation:
1. Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK
2. Department of Mathematics, ETH Zurich, Switzerland
Abstract
<p style='text-indent:20px;'>We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega \subset {\mathbb R}^n $\end{document}</tex-math></inline-formula> and any disjoint open sets <inline-formula><tex-math id="M2">\begin{document}$ W_1, W_2 \Subset {\mathbb R}^n \setminus \overline{\Omega} $\end{document}</tex-math></inline-formula> there always exist two positive, bounded, smooth, conductivities <inline-formula><tex-math id="M3">\begin{document}$ \gamma_1, \gamma_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \gamma_1 \neq \gamma_2 $\end{document}</tex-math></inline-formula>, with equal partial exterior Dirichlet-to-Neumann maps <inline-formula><tex-math id="M5">\begin{document}$ \Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2} $\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id="M6">\begin{document}$ f \in C_c^{\infty}(W_1) $\end{document}</tex-math></inline-formula>. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property <inline-formula><tex-math id="M7">\begin{document}$ \gamma_i^{1/2}-1 \in H^{2s, \frac{n}{2s}}( {\mathbb R}^n) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M8">\begin{document}$ i = 1, 2 $\end{document}</tex-math></inline-formula>. We also provide counterexamples on domains that are bounded in one direction when <inline-formula><tex-math id="M9">\begin{document}$ n \geq 4 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M10">\begin{document}$ s \in (0, n/4] $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M11">\begin{document}$ n = 2, 3 $\end{document}</tex-math></inline-formula> using a modification of the argument on bounded domains.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献