Learning to scan: A deep reinforcement learning approach for personalized scanning in CT imaging

Author:

Shen Ziju,Wang Yufei,Wu Dufan,Yang Xu,Dong Bin

Abstract

<p style='text-indent:20px;'>. Computed Tomography (CT) takes X-ray measurements on the subjects to reconstruct tomographic images. As X-ray is radioactive, it is desirable to control the total amount of dose of X-ray for safety concerns. Therefore, we can only select a limited number of measurement angles and assign each of them limited amount of dose. Traditional methods such as compressed sensing usually randomly select the angles and equally distribute the allowed dose on them. In most CT reconstruction models, the emphasize is on designing effective image representations, while much less emphasize is on improving the scanning strategy. The simple scanning strategy of random angle selection and equal dose distribution performs well in general, but they may not be ideal for each individual subject. It is more desirable to design a personalized scanning strategy for each subject to obtain better reconstruction result. In this paper, we propose to use Reinforcement Learning (RL) to learn a personalized scanning policy to select the angles and the dose at each chosen angle for each individual subject. We first formulate the CT scanning process as an Markov Decision Process (MDP), and then use modern deep RL methods to solve it. The learned personalized scanning strategy not only leads to better reconstruction results, but also shows strong generalization to be combined with different reconstruction algorithms.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis,Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. L2SR: learning to sample and reconstruct for accelerated MRI via reinforcement learning;Inverse Problems;2024-04-18

2. Automatic tuning of CT imaging parameters with reinforcement learning;Medical Imaging 2024: Physics of Medical Imaging;2024-04-01

3. Sequential Experimental Design for X-Ray CT Using Deep Reinforcement Learning;IEEE Transactions on Computational Imaging;2024

4. EMiTD: Enhanced Microwave Imaging for Breast Tumor Detection;2023 31st European Signal Processing Conference (EUSIPCO);2023-09-04

5. Exascale image processing for next-generation beamlines in advanced light sources;Nature Reviews Physics;2022-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3