Author:
Liang Qiaokang, ,Peng Jianzhong,Li Zhengwei,Xie Daqi,Sun Wei,Wang Yaonan,Zhang Dan, , ,
Abstract
<abstract>
<p>The recognition and analysis of tables on printed document images is a popular research field of the pattern recognition and image processing. Existing table recognition methods usually require high degree of regularity, and the robustness still needs significant improvement. This paper focuses on a robust table recognition system that mainly consists of three parts: Image preprocessing, cell location based on contour mutual exclusion, and recognition of printed Chinese characters based on deep learning network. A table recognition app has been developed based on these proposed algorithms, which can transform the captured images to editable text in real time. The effectiveness of the table recognition app has been verified by testing a dataset of 105 images. The corresponding test results show that it could well identify high-quality tables, and the recognition rate of low-quality tables with distortion and blur reaches 81%, which is considerably higher than those of the existing methods. The work in this paper could give insights into the application of the table recognition and analysis algorithms.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献