Author:
Kashkynbayev Ardak, ,Koptleuova Daiana
Abstract
<abstract>
<p>A tick-borne disease model is considered with nonlinear incidence rate and piecewise constant delay of generalized type. It is known that the tick-borne diseases have their peak during certain periods due to the life cycle of ticks. Only adult ticks can bite and transmit disease. Thus, we use a piecewise constant delay to model this phenomena. The global asymptotic stability of the disease-free and endemic equilibrium is shown by constructing suitable Lyapunov functions and Lyapunov-LaSalle technique. The theoretical findings are illustrated through numerical simulations.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine
Reference33 articles.
1. R. Jennings, Y. Kuang, H. R. Thieme, J. Wu, X. Wu, How ticks keep ticking in the adversity of host immune reactions, J. Math. Biol., 78 (2019), 1331-1364.
2. Centers for Disease Control and Prevention, Epidemiology and Statistics-Rocky Mountain Spotted Fever (RMSF). Available from: https://www.cdc.gov/rmsf/stats.
3. T. Nurmakhanov, Y. Sansyzbaev, B. Atshabar, P. Deryabin, S. Kazakov, A. Zholshorinov, et al., Crimean-Congo haemorrhagic fever virus in Kazakhstan (1948-2013), Int. J. Infect. Dis., 38 (2015), 19-23.
4. B. Knust, Z. B. Medetov, K. B. Kyraubayev, Y. Bumburidi, B. R. Erickson, A. MacNeil, et al., Crimean-Congo Hemorrhagic Fever, Kazakhstan, 2009-2010, Emerg. Infect. Dis., 18 (2012), 643-645.
5. L. J. S. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Math. Biosci., 124 (1994), 83-105.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献