Author:
Chaidez Julian,Hutchings Michael
Abstract
<p style='text-indent:20px;'>We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between "combinatorial Reeb orbits" for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbo's conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio <inline-formula><tex-math id="M1">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Medicine,Computational Mathematics,Computational Mechanics
Reference26 articles.
1. A. Abbondandolo, B. Bramham, U. L. Hryniewicz, P. A. S. Salomão.Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., 211 (2018), 687-778.
2. A. Abbondandolo, B. Bramham, U. L. Hryniewicz, P. A. S. Salomão.Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere, Compositio Math., 154 (2018), 2643-2680.
3. A. Abbondandolo and J. Kang, Symplectic homology of convex domains and Clarke's duality, preprint, arXiv: 1907.07779.
4. S. Artstein-Avidan, R. Karasev, Y. Ostrover.From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.
5. S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, IMRN, 2014, 165–193.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献