Impact of the closure of a coal district on the environmental issue of long-term surface movements

Author:

Vervoort Andre

Abstract

<abstract> <p>The environmental impact of deep underground coal mines using the longwall mining method is diverse, e.g., short- and long-term subsidence, damage to surface infrastructure, disturbance of the hydrogeological conditions, and the quality of groundwater and surface water. The study presented focusses on the long-term surface movements after the closure of an entire coal district. Due to the flooding of the underground infrastructure and rock mass, an upward surface movement or uplift is observed. For a specific site in the Campine coal district, Belgium results are presented of satellite data (radar-interferometry). However, the main aim of the study is to better understand the process of uplift and to determine the various mechanisms that are involved. For this purpose, an analytical framework was developed recently, and it was applied successfully in a relatively easy case. The case study of the paper is more challenging, but the usefulness of the analytical framework is clearly confirmed. The most important conclusions are that (i) the uplift is induced by an increase in water pressure after the closure, i.e., re-establishing the original hydraulic gradient, (ii) the expansion of both the goaf volumes and the volumes of the non-collapsed rock mass must be considered, and (iii) the assumption of a linear decrease of water pressure variation from the top to the bottom of the mined area at the end of the mining phase provides the most realistic results. However, the next step in the analysis should focus on a more advanced hydrogeological model of the complex underground environment.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine

Reference33 articles.

1. Galvin JM (2016) Ground engineering - Principles and practices for underground coal mining. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-25005-2

2. Peng SS (1992) Surface subsidence engineering. SME, New York, NY, USA.

3. Wagner H, Schümann HER (1991) Surface effects of total coal-seam extraction by underground mining methods. J S Atr Inst Min Metall 91: 221-231. https://hdl.handle.net/10520/AJA0038223X_2005

4. Whittaker BN, Reddish DJ (1989) Subsidence: occurrence, prediction and control. Elsevier, Amsterdam.

5. Chomacki L, Rusek J, Słowik L (2021) Selected artificial intelligence methods in the risk analysis of damage to masonry buildings subject to long-term underground mining exploitation. Minerals 11: 958. https://doi.org/10.3390/min11090958

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3