Minimizing the displacement of integrated system of wind and tidal turbines based on the soil types under cyclic loads

Author:

Majdi Nasab Navid1,Wang Alan2

Affiliation:

1. Mechanical Engineering Department, School of Engineering, Manukau Institute of Technology, 2023 Auckland, New Zealand

2. Auckland Bioengineering Institute, University of Auckland, New Zealand

Abstract

<abstract> <p>Hybrid offshore platforms are complex structures that need to tolerate cyclic loads. These loads occur when the turbine is working between cut-in and cut-out speeds and depend on the turbine's rotational speeds. However, selecting a proper soil for the structure to be secured in is very important for the stability of the hybrid system. This study aimed to calculate the displacement of an integrated offshore structure capable of supporting a hybrid assembly of one wind plus two tidal turbines under cyclic loads. The monopile has been found to be a suitable foundation type, as the most inexpensive solution in water depths less than 30 meters, for integrating both types of turbines. The deflection of the structure was compared for different types of soil with finite element analysis. Several simulations were conducted using OPTUM G3 software for calculating the stability of each type of soil in the rotational speed range of turbines. The results enable determining the amount of deflection for each soil type. The displacement range for soft clay is 0.0052 to 0.0098 m, and displacement is between 0.007 and 0.0158 m for medium sand. The minimum displacement of firm clay, which is 0.0115 meters at 5 rpm, is higher than all minima of other soil types. Thus, soft clay and medium sand show more stability, and firm clay is less stable in the rotational speed range of the turbines.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3