1. N. Park, R. Rossi, E. Koh, I. A. Burhanuddin, S. Kim, F. Du, et al., CGC: Contrastive graph clustering for community detection and tracking, in Proceedings of the ACM Web Conference 2022, (2022), 1115–1126. https://doi.org/10.1145/3485447.3512160
2. L. Guo, Q. Dai, Graph clustering via variational graph embedding, Pattern Recognit., 122 (2022), 108334. https://doi.org/10.1016/j.patcog.2021.108334
3. R. A. Khan, M. Kleinsteuber, Cluster-aware heterogeneous information network embedding, in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, (2022), 476–486. https://doi.org/10.1145/3488560.3498385
4. C. Song, Y. Teng, Y. Zhu, S. Wei, B. Wu, Dynamic graph neural network for fake news detection, Neurocomputing, 505 (2022), 362–374. https://doi.org/10.1016/j.neucom.2022.07.057
5. H. Bo, R. McConville, J. Hong, W. Liu, Social influence prediction with train and test time augmentation for graph neural networks, in Proceedings of 2021 International Joint Conference on Neural Networks (IJCNN), (2021), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533437