Author:
Cao Jingyue,Shao Yunkang,Wan Fangshu,Wang Jiaqi,Zhu Yifei
Abstract
<abstract><p>For any $ R > 0 $, infinitely many nonradial singular solutions can be constructed for the following equation:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} -\Delta u = e^u \;\;\; \mbox{in}\; B_R \backslash \{0\} , \;\;\;\;\;\;(0.1)\end{equation} $\end{document} </tex-math></disp-formula></p>
<p>where $ B_R = \{x \in \mathbb{R}^N \; (N \geq 3): \; |x| < R\} $. To construct nonradial singular solutions, we need to consider asymptotic expansion at the isolated singular point $ x = 0 $ of a prescribed solution of (0.1). Then, nonradial singular solutions of (0.1) can be constructed by using the asymptotic expansion and introducing suitable weighted Hölder spaces.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)