Synchronization of a class of nonlinear multiple neural networks with delays via a dynamic event-triggered impulsive control strategy

Author:

Yi Chengbo1,Cai Jiayi2,Guo Rui3

Affiliation:

1. School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen 518060, China

2. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China

3. School of Mathematical Sciences, Shenzhen University, Shenzhen 518060, China

Abstract

<p>In this paper, the impulsive synchronization of a class of nonlinear multiple neural networks (MNNs) with multi-delays was considered under a dynamic event-based mechanism. To achieve a more comprehensive synchronization outcome and mitigate the conservativeness of impulsive control due to predetermined time sequences, we integrated a dynamic event-triggered strategy. This approach formed a novel control framework for generalized MNNs, where impulsive inputs were applied only under specific conditions governed by event-triggering rules. Towards the above objectives, the impulsive jumping system, resulting from dynamic component, and matrix measure method were invoked to directly increase the computational simplicity and extensibility of the study. As the outcome, the synchronization criteria for the MNNs could be achieved, and the exponential convergence rate is resolved by considering both the generalized comparison principle regarding impulsive systems and the variable parameter formula. Moreover, Zeno-freeness of the achieved triggering regulation is ensured. Finally, two numerical examples confirmed the validity of the designed approach.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3