The important role of astrocytes in activity pattern transition of the subthalamopallidal network related to Parkinson's disease

Author:

Zhao Yuzhi12,Zhang Honghui12,Cao Zilu12

Affiliation:

1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China

2. MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an 710129, China

Abstract

This paper integrates astrocytes into the subthalamopallodal network model associated with Parkinson's disease (PD) to simulate the firing activity of this circuit. Under different network connectivity modes, we primarily investigate the role of astrocytes in the discharge rhythm of the subthalamic nucleus (STN) and the external segment of the globus pallidus (GPe). First, with varying synaptic coupling, the STN-GPe model generates five typical waveforms corresponding to the severity of PD symptoms in a sparsely coupled network in turn. Subsequently, astrocytes are included in the STN-GPe circuit. When they have an inhibitory effect on the STN and an excitatory effect on the GPe, the pathological discharge pattern of the network can be destroyed or even eliminated under appropriate conditions. At the same time, the high degree of synchrony between neurons and the power of the beta band weakens. In addition, we find that the astrocytic effect on the GPe plays a dominant role in the regulatory process. Finally, the tightly coupled network can also generate five different, highly correlated sustained discharge waveforms, including in-phase and anti-phase cluster synchronization. The effective regulation of the pathological state of PD, which involves improvements in the discharge patterns, synchronization, and beta oscillations, is achieved when astrocytes inhibit the STN and excite the GPe. It is worth noting that the regulatory influence of astrocytes on PD is shown to be robust, and independent of the network connectivity, to some extent. This work contributes to understanding the role of astrocytes in PD, providing insights for the treatment and regulation of PD.

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3