A Dual-channel Progressive Graph Convolutional Network via subgraph sampling
-
Published:2024
Issue:7
Volume:32
Page:4398-4415
-
ISSN:2688-1594
-
Container-title:Electronic Research Archive
-
language:
-
Short-container-title:era
Affiliation:
1. School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China 2. School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Abstract
<p>Graph Convolutional Networks (GCNs) demonstrate an excellent performance in node classification tasks by updating node representation via aggregating information from the neighbor nodes. Note that the complex interactions among all the nodes can produce challenges for GCNs. Independent subgraph sampling effectively limits the neighbor aggregation in convolutional computations, and it has become a popular method to improve the efficiency of training GCNs. However, there are still some improvements in the existing subgraph sampling strategies: 1) a loss of the model performance caused by ignoring the connection information among different subgraphs; and 2) a lack of representation power caused by an incomplete topology. Therefore, we propose a novel model called Dual-channel Progressive Graph Convolutional Network (DPGCN) via sub-graph sampling. We construct subgraphs via clustering and maintain the connection information among the different subgraphs. To enhance the representation power, we construct a dual channel fusion module by using both the geometric information of the node feature and the original topology. Specifically, we evaluate the complementary information of the dual channels based on the joint entropy between the feature information and the adjacency matrix, and effectively reduce the information redundancy by reasonably selecting the feature information. Then, the model convergence is accelerated through parameter sharing and weight updating in progressive training. We select 4 real datasets and 8 characteristic models for comparison on the semi-supervised node classification task. The results verify that the DPGCN possesses superior classification accuracy and robustness. In addition, the proposed architecture performs excellently in the low labeling rate, which is of practical value to label scarcity problems in real cases.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference23 articles.
1. L. F. R. Ribeiro, P. H. P. Saverese, D. R. Figueiredo, Struc2vec: Learning node representation from structural identity, in KDD '17 KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, (2017), 385–394. https://doi.org/10.1145/3097983.3098061 2. Y. Zhang, S. Pal, M. Coates, D. Ustebay, Bayesian graph convolutional neural networks for semi-supervised classification, in Proceedings of the AAAI conference on artificial intelligence, AAAI, 33 (2019), 5829–5836. https://doi.org/10.1609/aaai.v33i01.33015829 3. T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, preprint, arXiv: 1609.02907. 4. N. Yadati, V. Nitin, M. Nimishakavi, P. Yadav, A. Louis, P. Talukdar, et al., NHP: Neural hypergraph link prediction, in CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, ACM, (2020), 1705–1714. https://doi.org/10.1145/3340531.3411870 5. D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, (2016), 1225–1234. https://doi.org/10.1145/2939672.2939753
|
|