A deep clustering framework integrating pairwise constraints and a VMF mixture model

Author:

Ma He1,Wu Weipeng2

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150000, China

2. College of Software, Harbin Institute of Information Technology, Harbin 150431, China

Abstract

<abstract><p>We presented a novel deep generative clustering model called Variational Deep Embedding based on Pairwise constraints and the Von Mises-Fisher mixture model (VDEPV). VDEPV consists of fully connected neural networks capable of learning latent representations from raw data and accurately predicting cluster assignments. Under the assumption of a genuinely non-informative prior, VDEPV adopted a von Mises-Fisher mixture model to depict the hyperspherical interpretation of the data. We defined and established pairwise constraints by employing a random sample mining strategy and applying data augmentation techniques. These constraints enhanced the compactness of intra-cluster samples in the spherical embedding space while improving inter-cluster samples' separability. By minimizing Kullback-Leibler divergence, we formulated a clustering loss function based on pairwise constraints, which regularized the joint probability distribution of latent variables and cluster labels. Comparative experiments with other deep clustering methods demonstrated the excellent performance of VDEPV.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3