GFPSMA: An improved algorithm based on flower pollination, slime mould, and game inspiration for global optimization

Author:

Liu Yujia1,Chen Ziyi2,Xiong Wenqing3,Zhu Donglin3,Zhou Changjun3

Affiliation:

1. School of Intelligent Manufacturing Engineering, Jiangxi College of Application Science and Technology, Nanchang 330000, China

2. Jiangxi University of Science and Technology, Ganzhou 341000, China

3. School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China

Abstract

<abstract> <p>Metaheuristic algorithms have garnered much attention among researchers owing to their robustness, adaptability, independence from a predetermined initial solution, and lack of reliance on gradient computations. The flower pollination algorithm (FPA) and the slime mould algorithm (SMA) are efficient methodologies for addressing global optimization challenges. Nonetheless, tackling large-scale global problems using a single algorithm often proves challenging due to inherent limitations in its mechanism. One effective approach to mitigating this limitation is to hybrid the two algorithms employing suitable strategies. We proposed a hybrid algorithm (GFPSMA) based on FPA and SMA. First, to address the global exploration issue of FPA, a method was proposed that utilized the golden section mechanism to enhance information exchange between random individuals and the best individual. Second, to improve the reliability of the random search phase in SMA, an adaptive step-size strategy was introduced. Furthermore, a dual-competition mechanism, inspired by gaming concepts, was introduced to enhance the integration of the two algorithms. Finally, an elite learning method with adjustment conditions was employed to refine the localization of the best individual. To assess the performance advantage of GFPSMA, 39 benchmark functions were employed, comparing GFPSMA with FPA and SMA along with their six variants, six variants of other metaheuristic algorithms, three CEC competition algorithms, totaling 17 algorithms, and strategic algorithms for testing. Experimental results demonstrated the favorable performance advantage of GFPSMA. Additionally, the feasibility and practicality of GFPSMA were demonstrated in four engineering problems.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3