Evaluating the environmental impact on connected vehicles during freeway accidents using VISSIM with probe vehicle data

Author:

Shin Hyunju1,Ko Jieun2,Lee Gunwoo2,Oh Cheol2

Affiliation:

1. Department of Smart City Engineering, Hanyang University ERICA, Ansan 15588, Korea

2. Department of Transportation and Logistics Engineering, Hanyang University ERICA, Ansan 15588, Korea

Abstract

<abstract> <p>We evaluated emissions as an environmental effect resulting from connected vehicles (CVs) during freeway accidents. The CVs were used to determine the CV driving characteristics, whose values were used to implement the CV driving pattern using a microscopic traffic simulation. The environmental effect of implementation of CV was evaluated using the vehicle trajectory data derived from the simulation results. Implementation of CV effectively minimized the vehicle emissions regardless of the market penetration rate (MPR). In terms of vehicle type, the emissions reduction rate of passenger cars was the highest at a maximum of 33.4%. In the case of pollutants, the reduction rate of CO based on all vehicles was the highest at a maximum of 28.8%. Overall, we found that the implementation of CV positively affected vehicle emissions reductions, and an MPR of 60% could maximize the vehicle emissions reduction effect.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3