Bioactive compounds from plants and by-products: Novel extraction methods, applications, and limitations

Author:

Zaky Ahmed A.12,Akram Muhammad Usman3,Rybak Katarzyna1,Witrowa-Rajchert Dorota1,Nowacka Malgorzata1

Affiliation:

1. Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, 02-787, Poland

2. Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt

3. Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

Abstract

<abstract> <p>In recent years, numerous articles documenting bioactive components derived from diverse food sources have been published. Plant-based bioactive substances hold significant prospects for use as dietary supplements and functional foods because of their potential advantages for human health as antimicrobial, anticancer, anti-inflammatory, and antioxidant agents. Utilizing plant by-products as raw materials can also lower production costs and lessen environmental impacts. Thus, this review covered the bioactive substances found in plants and their by-products. The health benefits of bioactive compounds obtained from plant origins were also highlighted in this review. Furthermore, we concentrated on both conventional extraction techniques (e.g., Soxhlet, heat reflux, and maceration) and innovative extraction strategies for bioactive substances, including pulsed electric field (PEF), pressurized liquid, microwave-assisted, ultrasonic-assisted, and subcritical fluid methods. Higher yields obtained by novel extraction methods were found to be of primary interest, considering immediate beneficial economic outcomes. The potential applications of those bioactive substances in the food industry have been studied. Additionally, this investigation handled concerns regarding the challenges and limitations related to bioactive compounds. It is anticipated that the information covered in this review will prove to be a useful resource for the plant food processing sector in suggesting a cost-effective and environmentally friendly extraction technique that would turn plant wastes into a functional product with a high added value.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference237 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3