Novel laser tracking measurement system based on the position sensitive detector

Author:

Liu Jin1,Zhang Fan1,Kudreyko Aleksey2,Ren Wenjia1,Yang Haima3

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Department of Medical Physics and informatics, Bashkir State Medical University, Lenina st. 3, 450008 Ufa, Russia

3. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

<abstract> <p>The rapid development of modern industrial technology has led to the increase of machinery precision. Laser tracking measurement systems represent a novel type of coordinate measurement method, which was developed on the basis of metrology. In this paper, we aim to define a single-station 3D coordinate rotating laser tracking measurement system based on the principle of the space coordinate method. In view of the current architecture and optical path of the system, we establish the ideal mathematical model of the system and derive the coordinate expression for arbitrary measured points in the measurement space. The output response of the photoelectric position detector to the rotating laser and the linearity of the position signal in the detection circuit have been detected via a concrete experiment. A laser tracking system was used to track the target mirror mounted on the coordinate measuring machine measuring spindle. It is shown that stable tracking is possible during the 3D movement of a cat's eye retroreflector if its velocity is 0.2 m/s and the distance to the moving object is 1–2 m. The corresponding velocity of the object must be 0.4 m/s. Our system provides a feasible implementation method for the tracking of the moving target space position.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3