Advancing document-level event extraction: Integration across texts and reciprocal feedback

Author:

Zuo Min12,Li Jiaqi12,Wu Di3,Wang Yingjun12,Dong Wei12,Kong Jianlei14,Hu Kang5

Affiliation:

1. National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China

2. China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China

3. Beijing Academy of TCM Beauty Supplements Co., Ltd., Beijing 102401, China

4. Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China

5. National Institutes for Food and Drug Control, Beijing 100050, China

Abstract

<abstract> <p>The primary objective of document-level event extraction is to extract relevant event information from lengthy texts. However, many existing methods for document-level event extraction fail to fully incorporate the contextual information that spans across sentences. To overcome this limitation, the present study proposes a document-level event extraction model called Integration Across Texts and Reciprocal Feedback (IATRF). The proposed model constructs a heterogeneous graph and employs a graph convolutional network to enhance the connection between document and entity information. This approach facilitates the acquisition of semantic information enriched with document-level context. Additionally, a Transformer classifier is introduced to transform multiple event types into a multi-label classification task. To tackle the challenge of event argument recognition, this paper introduces the Reciprocal Feedback Argument Extraction strategy. Experimental results conducted on both our COSM dataset and the publicly available ChFinAnn dataset demonstrate that the proposed model outperforms previous methods in terms of F1 value, thus confirming its effectiveness. The IATRF model effectively solves the problems of long-distance document context-aware representation and cross-sentence argument dispersion.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference54 articles.

1. X. Wu, J. Wu, X. Fu, J. Li, P. Zhou, X. Jiang, Automatic knowledge graph construction: A report on the 2019 icdm/icbk contest, in 2019 IEEE International Conference on Data Mining (ICDM), (2019), 1540–1545. https://doi.org/10.1109/ICDM.2019.00204

2. Z. Chen, H. Yu, J. Li, X. Luo, Entity representation by neighboring relations topology for inductive relation prediction, in PRICAI 2022: Trends in Artificial Intelligence, Springer, (2022), 59–72. https://doi.org/10.1007/978-3-031-20865-2_5

3. C. Y. Liu, C. Zhou, J. Wu, H. Xie, Y. Hu, L. Guo, CPMF: A collective pairwise matrix factorization model for upcoming event recommendation, in 2017 International Joint Conference on Neural Networks (IJCNN), (2017), 1532–1539. https://doi.org/10.1109/IJCNN.2017.7966033

4. L. Gao, J. Wu, Z. Qiao, C. Zhou, H. Yang, Y. Hu, Collaborative social group influence for event recommendation, in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, (2016), 1941–1944. https://doi.org/10.1145/2983323.2983879

5. J. Liu, Y. Chen, K. Liu, W. Bi, X. Liu, Event extraction as machine reading comprehension, in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), (2020), 1641–1651. https://doi.org/10.18653/v1/2020.emnlp-main.128

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3