Semantic segmentation method for myocardial contrast echocardiogram based on DeepLabV3+ deep learning architecture

Author:

Cheng Huan1,Zhang Jucheng2,Gong Yinglan3,Pu Zhaoxia4,Jiang Jun4,Chu Yonghua2,Xia Ling1

Affiliation:

1. Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China

2. Department of Clinical Engineering, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China

3. Institute of Wenzhou, Zhejiang University, Wenzhou 325036, China

4. Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China

Abstract

<abstract> <p>Myocardial contrast echocardiography (MCE) has been proposed as a method to assess myocardial perfusion for the detection of coronary artery diseases in a non-invasive way. As a critical step of automatic MCE perfusion quantification, myocardium segmentation from the MCE frames faces many challenges due to the low image quality and complex myocardial structure. In this paper, a deep learning semantic segmentation method is proposed based on a modified DeepLabV3+ structure with an atrous convolution and atrous spatial pyramid pooling module. The model was trained separately on three chamber views (apical two-chamber view, apical three-chamber view, and apical four-chamber view) on 100 patients' MCE sequences, divided by a proportion of 7:3 into training and testing datasets. The results evaluated by using the dice coefficient (0.84, 0.84, and 0.86 for three chamber views respectively) and Intersection over Union(0.74, 0.72 and 0.75 for three chamber views respectively) demonstrated the better performance of the proposed method compared to other state-of-the-art methods, including the original DeepLabV3+, PSPnet, and U-net. In addition, we conducted a trade-off comparison between model performance and complexity in different depths of the backbone convolution network, which illustrated model application feasibility.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Shape-Consistent Deep-Learning Segmentation Architecture for Low-Quality and High-Interference Myocardial Contrast Echocardiography;Ultrasound in Medicine & Biology;2024-08

2. Using Improved DeepLabV3+ for Complex Scene Segmentation;2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3