Dynamic analysis of a phytoplankton-fish model with the impulsive feedback control depending on the fish density and its changing rate

Author:

Cheng Huidong12,Xu Hui2,Fu Jingli13

Affiliation:

1. College of Information and Control Engineering, Shandong Foreign Affairs Vocational University, Weihai 264504, China

2. College of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao 266590, China

3. Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

<abstract><p>This paper proposes and studies a comprehensive control model that considers fish population density and its current growth rate, providing new ideas for fishing strategies. First, we established a phytoplankton-fish model with state-impulse feedback control based on fish density and rate of change. Secondly, the complex phase sets and impulse sets of the model are divided into three cases, then the Poincar$ \acute{\mbox{e}} $ map of the model is defined and its complex dynamic properties are deeply studied. Furthermore, some necessary and sufficient conditions for the global stability of the fixed point (order-$ 1 $ limit cycle) have been provided even for the Poincar$ \acute{\mbox{e}} $ map. The existence conditions for periodic solutions of order-$ k $($ k \ge 2 $) are discussed, and the influence of dynamic thresholds on system dynamics is shown. Dynamic thresholds depend on fish density and rate of change, i.e., the form of control employed is more in line with the evolution of biological populations than in earlier studies. The analytical method presented in this paper also plays an important role in analyzing impulse models with complex phase sets or impulse sets.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3