An efficient strategy for identifying essential proteins based on homology, subcellular location and protein-protein interaction information

Author:

Zhang Zhihong1,Luo Yingchun2,Jiang Meiping2,Wu Dongjie3,Zhang Wang4,Yan Wei1,Zhao Bihai1

Affiliation:

1. College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, Hunan 410022, China

2. Department of Ultrasound, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China

3. Department of Banking and Finance, Monash University, Clayton, Victoria 3168, Australia

4. Department of Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China

Abstract

<abstract> <p>High throughput biological experiments are expensive and time consuming. For the past few years, many computational methods based on biological information have been proposed and widely used to understand the biological background. However, the processing of biological information data inevitably produces false positive and false negative data, such as the noise in the Protein-Protein Interaction (PPI) networks and the noise generated by the integration of a variety of biological information. How to solve these noise problems is the key role in essential protein predictions. An Identifying Essential Proteins model based on non-negative Matrix Symmetric tri-Factorization and multiple biological information (IEPMSF) is proposed in this paper, which utilizes only the PPI network proteins common neighbor characters to develop a weighted network, and uses the non-negative matrix symmetric tri-factorization method to find more potential interactions between proteins in the network so as to optimize the weighted network. Then, using the subcellular location and lineal homology information, the starting score of proteins is determined, and the random walk algorithm with restart mode is applied to the optimized network to mark and rank each protein. We tested the suggested forecasting model against current representative approaches using a public database. Experiment shows high efficiency of new method in essential proteins identification. The effectiveness of this method shows that it can dramatically solve the noise problems that existing in the multi-source biological information itself and cased by integrating them.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3