Affiliation:
1. School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2. Shanghai Hunter Hydraulic Control Technology Co, Ltd, Shanghai 201612, China
Abstract
<abstract><p>The three-dimensional trajectory tracking of AUV is an important basis for it to complete its task. Due to many uncertain disturbances such as wind, wave and current on the sea, it is easy to cause problems such as slow convergence speed of the controller and saturation of the controller output in the three-dimensional trajectory tracking control of AUV. And the dynamic uncertainty of AUV's own model will have a great negative impact on AUV's trajectory tracking control. In order to solve the problem of slow convergence speed of the above controller, the finite time control method is introduced into the designed position controller. In order to solve the problem of AUV controller output saturation, an auxiliary dynamic system is designed to compensate the system control output saturation. In order to solve the uncertainty of AUV model, a reduced order extended observer is designed in the dynamic controller. It can observe the motion parameters of AUV at any time, and compensate the uncertainty of model uncertainty and external environment disturbance in real time. The control method in this paper is simulated in a three-dimensional model. The experimental results show that the convergence speed, control accuracy, robustness and tracking effect of AUV are higher than those of common trajectory tracker. The algorithm is loaded into the "sea exploration Ⅱ" AUV and verified by experiments in Suzhou lake. The effect of AUV navigation basically meets the task requirements, in which the mean value of pitch angle and heading angle error is less than 8 degrees and the mean value of depth error is less than 0.1M. The trajectory tracker can better meet the trajectory tracking control needs of the AUV.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference22 articles.
1. W. Caharija, K. Y. Pettersen, J. T. Gravdahl, E. Børhaug, Interal LOS guidance for horizontal path following of underactuated autonomous underwater vehicles in the presence of vertical ocean currents, in 2012 American Control Conference, (2012), 375–382. https://doi.org/10.1109/ACC.2012.6315607
2. P. Encarnacao, A. Pascoal, M. Arcak, Path following for autonomous marine craft, IFAC Proc. Vol., (2000), 117–122. https://doi.org/10.1016/S1474-6670(17)37061-1
3. X. Qi, Spatial target path following control based on Nussbaum gain method for underactuated underwater vehicle, Ocean Eng., 104 (2015), 680–685. https://doi.org/10.1016/j.oceaneng.2015.06.014
4. H. J. Wang, Z. Y. Chen, H. M. Jia, X. H. Chen, Underactuated AUV 3D path tracking control based filter backstepping method, Acta Autom. Sin., 41 (2015), 631–645.
5. J. Miao, S. Wang, L. Fan, Y. Li, Spatial curvilinear path following control of underactuated AUV, Acta Armamentarii, 38 (2017), 1786–1796.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献