Two-way coupling and Kolmogorov scales on inhaler spray plume evolutions from Ventolin, ProAir, and Qvar

Author:

Xi Jinxiang1,Talaat Mohamed1,Si Xiuhua April2

Affiliation:

1. Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA

2. Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave, Riverside, CA 92504, USA

Abstract

<abstract> <p>Previous numerical studies of pulmonary drug delivery using metered-dose inhalers (MDIs) often neglected the momentum transfer from droplets to fluid. However, Kolmogorov length scales in MDI flows can be comparable to the droplet sizes in the orifice vicinity, and their interactions can modify the spray behaviors. This study aimed to evaluate the two-way coupling effects on spray plume evolutions compared to one-way coupling. The influences from the mass loading, droplet size, and inhaler type were also examined. Large-eddy simulation and Lagrangian approach were used to simulate the flow and droplet motions. Two-way coupled predictions appeared to provide significantly improved predictions of the aerosol behaviors close to the Ventolin orifice than one-way coupling. Increasing the applied MDI dose mass altered both the fluid and aerosol dynamics, notably bending the spray plume downward when applying a dose ten times larger. The droplet size played a key role in spray dynamics, with the plume being suppressed for 2-µm aerosols and enhanced for 20-µm aerosols. The Kolmogorov length scale ratio dp/η correlated well with the observed difference in spray plumes, with suppressed plumes when dp/η &lt; 0.1 and enhanced plumes when dp/η &gt; 0.1. For the three inhalers considered (Ventolin, ProAir, and Qvar), significant differences were predicted using two-way and one-way coupling despite the level and manifestation of these differences varied. Two-way coupling effects were significant for MDI sprays and should be considered in future numerical studies.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3