Abstract
<abstract><p>In this work we obtain new lower and upper optimal bounds for general (exponential) indices of a graph. In the same direction, we show new inequalities involving some well-known topological indices like the generalized atom-bound connectivity index $ ABC_\alpha $ and the generalized second Zagreb index $ M_2^\alpha $. Moreover, we solve some extremal problems for their corresponding exponential indices ($ e^{ABC_\alpha} $ and $ e^{M_2^{\alpha}} $).</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference34 articles.
1. R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64 (2010), 359–372.
2. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001
3. K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, Chem. Phys. Lett., 511 (2011), 45–454. https://doi.org/10.1016/j.cplett.2011.06.049
4. I. Gutman, B. Furtula, Vertex-degree-based molecular structure descriptors of benzenoid systems and phenylenes, J. Serb. Chem. Soc., 77 (2012), 1031–1036. https://doi.org/10.2298/JSC111212029G
5. I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献