A novel greedy adaptive ant colony algorithm for shortest path of irrigation groups

Author:

Zhan Chenyang1,Tian Min1,Liu Yang2,Zhou Jie2,Yi Xiang3

Affiliation:

1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832000, China

2. College of Information Science and Technology, Shihezi University, Shihezi, 832000, China

3. The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, China

Abstract

<abstract> <p>With the full-scale implementation of facility agriculture, the laying of a water distribution network (WDN) on farmland plays an important role in irrigating crops. Especially in large areas of farmland, with the parameters of moisture sensors, the staff can divide the WDN into several irrigation groups according to the soil moisture conditions in each area and irrigate them in turn, so that irrigation can be carried out quickly and efficiently while meeting the demand for irrigation. However, the efficiency of irrigation is directly related to the pipe length of each irrigation group of the WDN. Obtaining the shortest total length of irrigation groups is a path optimization problem. In this paper, a grouped irrigation path model is designed, and a new greedy adaptive ant colony algorithm (GAACO) is proposed to shorten the total length of irrigation groups. To verify the effectiveness of GAACO, we compare it with simple modified particle swarm optimization (SMPSO), chaos-directed genetic algorithms (CDGA) and self-adaptive ant colony optimization (SACO), which are currently applied to the path problem. The simulation results show that GAACO can effectively shorten the total path of the irrigation group for all cases from 30 to 100 water-demanding nodes and has the fastest convergence speed compared to SMPSO, CDGA and SACO. As a result, GAACO can be applied to the shortest pipeline path problem for irrigation of farmland groups.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3