Population persistence under two conservation measures: Paradox of habitat protection in a patchy environment

Author:

Nakagiri Nariyuki1,Yokoi Hiroki2,Sakisaka Yukio34,Tainaka Kei-ichi5

Affiliation:

1. School of Human Science and Environment, University of Hyogo, Himeji 670-0092, Japan

2. Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan

3. Division of Early Childhood Care and Education, Nakamura Gakuen University Junior College, Fukuoka 814-0198, Japan

4. Institute of Preventive and Medicinal Dietetics, Nakamura Gakuen University, Fukuoka 814-0198, Japan

5. Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu 432-856, Japan

Abstract

<abstract> <p>Anthropogenic modification of natural habitats is a growing threat to biodiversity and ecosystem services. The protection of biospecies has become increasingly important. Here, we pay attention to a single species as a conservation target. The species has three processes: reproduction, death and movement. Two different measures of habitat protection are introduced. One is partial protection in a single habitat (patch); the mortality rate of the species is reduced inside a rectangular area. The other is patch protection in a two-patch system, where only the mortality rate in a particular patch is reduced. For the one-patch system, we carry out computer simulations of a stochastic cellular automaton for a "contact process". Individual movements follow random walking. For the two-patch system, we assume an individual migrates into the empty cell in the destination patch. The reaction-diffusion equation (RDE) is derived, whereby the recently developed "swapping migration" is used. It is found that both measures are mostly effective for population persistence. However, comparing the results of the two measures revealed different behaviors. ⅰ) In the case of the one-patch system, the steady-state densities in protected areas are always higher than those in wild areas. However, in the two-patch system, we have found a paradox: the densities in protected areas can be lower than those in wild areas. ⅱ) In the two-patch system, we have found another paradox: the total density in both patches can be lower, even though the proportion of the protected area is larger. Both paradoxes clearly occur for the RDE with swapping migration.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traveling Wave of Biological Invasion: Effects of Swapping Migration;Journal of the Physical Society of Japan;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3