Formation deployment control of multi-agent systems modeled with PDE

Author:

Zhang Sai,Tang Li,Liu Yan-Jun

Abstract

<abstract> <p>In this paper, the formation control problem of PDE-based multi-agent systems (MASs) is discussed. Firstly, the MASs are developed on a one-dimensional chain topology based on the polar coordinate system, and the dynamics of MASs is simulated using the spatial-varying coefficient wave equation. Secondly, a boundary control scheme is proposed by combining PDE-backstepping technique and the Volterra integral transformation. The well-posedness of kernel function is proved by using the iterative and inductive methods. Then, the stability of the closed-loop system is proved by using Lyapunov direct method. Finally, the PDE model is discretized using the finite difference method, and the distributed cooperative control protocol is obtained, in which the followers only need to know the location information of themselves and their neighbors. With this control protocol, leaders drive the MAS to stabilize in the desired formation. Both theoretical analysis and numerical simulation prove that the proposed control scheme is effective.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3