Author:
Wu Xing,Mao Shuai,Xiong Luolin,Tang Yang
Abstract
<abstract><p>With the development of complex network theory, many phenomena on complex networks, such as infectious disease transmission, information spreading and transportation management, can be explained by temporal network dynamics, to reveal the evolution of the real world. Due to the failure of equipment for collecting data, human subjectivity, and false decisions made by machines when the high accuracy is required, data from temporal networks is usually incomplete, which makes the samples unrepresentative and the model analysis more challenging. This survey concentrates on the pre-processing strategies of incomplete data and overviews two categories of methods on data imputation and prediction, respectively. According to whether each layer in temporal networks has the coupling process, this survey overviews the dynamic modeling approaches in terms of both a single process and coupling processes on complex temporal networks. Moreover, for complex temporal networks with incomplete data, this survey summarizes various characteristic analysis methods, which concentrate on critical nodes identification, network reconstruction, network recoverity, and criticality. Finally, some future directions are discussed for temporal networks dynamics with incomplete data.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference101 articles.
1. Z. Liu, Y. Yang, W. Huang, Z. Tang, N. Li, F. Wu, How do your neighbors disclose your information: social-aware time series imputation, in The World Wide Web Conference, (2019), 1164–1174. https://doi.org/10.1145/3308558.3313714
2. D. Xu, C. Wei, P. Peng, Q. Xuan, H. Guo, Ge-gan: a novel deep learning framework for road traffic state estimation, Transp. Res. Part C: Emerging Technol., 117 (2020), 102635. https://doi.org/10.1016/j.trc.2020.102635
3. S. Tikka, A. Hyttinen, J. Karvanen, Causal effect identification from multiple incomplete data sources: a general search-based approach, J. Stat. Software, 99 (2021), 1–40. https://doi.org/10.18637/jss.v099.i05
4. C. Hu, H. He, H. Jiang, Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: a direct error method, Automatica, 112 (2020), 108675. https://doi.org/10.1016/j.automatica.2019.108675
5. Y. Jia, H. Wu, Global synchronization in finite time for fractional-order coupling complex dynamical networks with discontinuous dynamic nodes, Neurocomputing, 358 (2019), 20–32. https://doi.org/10.1016/j.neucom.2019.05.036